	Category			Model number	Number of digits	Memry backup at power failure	Operation speed	$\begin{aligned} & \text { Sensor } \\ & \text { power } \end{aligned}$	Source voltage
	Preset Counter	Single preset	Addition with I/O indicators	KCX-1	1		10cps/ 200cps	DC12V 50 mA	AC90~132V AC180 ~264V $50 / 60 \mathrm{~Hz}$
				KCX-2	2				
				KCX-3	3		$\begin{gathered} 10 \mathrm{cps} / \\ 1 \mathrm{kcps} \end{gathered}$		
				KCX-4	4				
$\begin{aligned} & > \\ & \underline{\mathrm{v}} \end{aligned}$			Addition with numerical display	KCX-1D	1		10cps/ 200cps		
				KCX-2D	2				
				KCX-2DM	2	-			
				KCX-3D	3		$\begin{gathered} 10 \mathrm{cps} / \\ 1 \mathrm{kcps} \end{gathered}$		
$\begin{aligned} & \mathbb{K} \\ & \underset{U}{U} \\ & \underline{y} \end{aligned}$				KCX-3DM	3	-			
				KCX-4D	4				
				KCX-4DM	4	\bullet			
				KCX-5D	5		10cps/ 5kcps		
$\begin{aligned} & x \\ & \underline{y} \end{aligned}$				KCX-5DM	5	-			
				KCX-6D	6				
				KCX-6DM	6	\bullet			
				KCX-B4	4				
			Addition and Subtraction	KCX-B4M	4	-	10cps/	DC24V	$\begin{aligned} & \text { AC90~132V } \\ & \text { AC180~264V } \end{aligned}$
				KCX-B6	6		20kcps		$50 / 60 \mathrm{~Hz}$
v				KCX-B6M	6	\bullet			
		Dual preset (with numerical display)	Addition	KCX-3W	3		$\begin{aligned} & 10 \mathrm{cps} / \\ & 2 \mathrm{kcps} \end{aligned}$	$\begin{gathered} \text { DC12V } \\ 50 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & \text { AC90~132V } \\ & \text { AC180~264V } \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$
				KCX-4W	4				
				KCX-4WM	4	-			
				KCX-5W	5		10cps/ 5 kcps		
				KCX-6W	6				
				KCX-6WM	6	-			
			Addition and Subtraction	KCX-B4W	4		10cps/ 20kcps	$\begin{gathered} \mathrm{DC} 24 \mathrm{~V} \\ 80 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & \text { AC90~132V } \\ & \text { AC180~264V } \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$
				KCX-B4WM	4	-			
				KCX-B6W	6				
				KCX-B6WM	6	\bullet			
	Total counter	-	Addition	KCX-4T	4	\bullet	(10cps/	DC12V 50 mA	$\begin{aligned} & \mathrm{AC} 90 \sim 132 \mathrm{~V} \\ & \mathrm{AC} 180 \sim 264 \mathrm{~V} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$
				KCX-6T	6	\bullet	10cps/		
				KCX-8T	8	-	$\begin{aligned} & 10 \mathrm{cps} / \\ & 10 \mathrm{Kcps} \\ & \hline \end{aligned}$		
			Addition and Subtraction	KCX-B6T	6	-	10cps/ 20kcps	$\begin{gathered} \text { DC24V } \\ 80 \mathrm{~mA} \end{gathered}$	

Accessory: Metal fitting(bracket)

```
Maximum
Counting speed
1- or 2-digit: 10cps or 200cps 3 - or 4 -digit: 10 cps or 1 Kcps 5 - or 6 -digit: 10 cps or 5 Kcps
```

These counters feature an easy to read green LED screen to display one- to six-digit values, and operation modes and status. Advanced functions are also integrated, including dust insulation and power backup.

Merits

-Green LED for easy reading

Each model features a green LED display to facilitate reading. Numerical values are displayed with the height of 8 mm .

ODust prevention cover

On all models, a protective cover is attached to the front panel. The keys and buttons can be operated through this cover.

Minimum space requirement

In compliance with the DIN standard, all models are sized 72 mm (height) $\sim 72 \mathrm{~mm}$ (width) $\sim 103.5 \mathrm{~mm}$ (depth).

OMemory backup at power shutdown

Nickel cadmium battery is supported for minimum maintenance work. During power shutdown, current consumption is kept as low as several microamperes allowing memory backup for up to 2,000 hours. Power failure is detected by an integrated circuit to activate emergency I/O gates. Input status before shutdown is stored so the counter can resume operation upon recovery. Any pulse input is ignored during power shutdown.

OBuilt-in sensor power

A DC12V, 50 mA power source is included in all counters to allow direct connection to a proximity switch, photoelectric sensor or rotary encoder.

- Variable output duration

On the front panel, you can control the duration of One shot (Type A) output. Using a dial, the output time can be adjusted between 50 ms and $1,000 \mathrm{~ms}$. You can extend it to 10 seconds by adding a capacitor.

-Type A and Type B output options

With a small change to the connection, the output mode can be switched between One shot and Hold.

Six counter modes

Any of the six combinations can be selected as described on page 78.

Wide range of source voltage

You can choose source voltage of either AC90 to 132 V , or AC180 to 264V.

-Option to disable count input

OMounting

The counter can be mounted onto the wall surface in either way, wall surface mounting or flush mounting. Use mounting bracket for the flush mounting and use terminal block (socket F) for wall surface mounting.

Socket F

KCX- $\square, \square \mathbf{M}, \square \mathbf{D}, \square \mathbf{D M}$

Specifications

Model number	I/O indicators	Standard	KCX-1	KCX-2	KCX-3	KCX-4	-	-
	Numerical display	Standard	KCX-1D	KCX-2D	KCX-3D	KCX-4D	KCX-5D	KCX-6D
		backup memory	-	KCX-2DM	KCX-3DM	KCX-4DM	KCX-5DM	KCX-6DM
Number of digits			1-digit	2-digit	3-digit	4-digit	5-digit	6-digit
Operation	Type A: One shop output with auto reset Type B: Hold output							
Count input			Contact input Static input		Contact input	Static input	Contact input	Static input
	Maximum count speed		10cps	200cps	10cps	1 kcps	10cps	5kcps
	Minimum pulse width		50 ms	2.5 ms	50 ms	0.5 ms	50 ms	0.1 ms
	Input resistance		$6 \mathrm{k} \Omega$	$12 \mathrm{k} \Omega$	$6 \mathrm{k} \Omega$	$12 \mathrm{k} \Omega$	$6 \mathrm{k} \Omega$	$12 \mathrm{k} \Omega$
	Input voltage		"L"0~2V / "H"6~30V					
External reset	Response time		On delay: 20 ms Off delay: 4 ms		On delay: 10 ms Off delay: 2 ms		On delay: 5 ms Off delay: 1 ms	
	Input resistance		$6 \mathrm{k} \Omega$					
	Input voltage		"L"0~2V/"H"6~30V					
Auto reset	Response time		Max. 5ms		Max. 1 ms		Max. 0.2ms	
Power-on reset*1	Power shutdown		Min. 0.2s					
	Reset duration		Min. 0.2s					
DC output*2	Output resistance		$1.2 \mathrm{k} \Omega$ (at no load voltage of 12 V)					
	Output current		Source: 2.5 mA Sink:8.0mA					
	Withstand voltage		45V					
	Output duration		Type A: Variable Type B: Held					
Relay output	Capacity		AC250V 2A					
	Circuit		One transfer circuit					
	Output duration		Type A: Variable Type B: Held					
	Electrical durability		Min. 1,000,000 contacts at AC250V resistance load)					
	Mechanical durability		Min. 10,000,000 contacts					
I/O response*3			10cps	200cps	10cps	1 kcps	10cps	5kcps
	Voltage output		Approx. 10 ms	Approx. 4ms	Approx. 10 ms	Approx. 0.8 ms	Approx. 10 ms	Approx. 0.15 ms
	Contact output		Approx. 20ms	Approx. 14ms	Approx. 20ms Approx. 10 ms		Approx. 20 ms Approx. 10 ms	
Memory backup at power shutdown (Only models with battery)	Time for charging*4		50hours					
	Backup duration		Approx. 2,000 hours at $25^{\circ} \mathrm{C}$ or 800 hours at $45^{\circ} \mathrm{C}$					
	Response of emergency input gate*5		$20 \sim 200 \mathrm{~ms}$ (70ms typ)					
	Response of input gete upon recovery*6		$\begin{aligned} & 50 \sim 500 \mathrm{~ms} \\ & (120 \mathrm{~ms} \text { typ) } \end{aligned}$					
Sensor power	DC+12V $\pm 2 \mathrm{~V} 50 \mathrm{~mA}$ Max. 10\% (rms) ripple							
Withstand voltage	AC 2 kV for one minute (For each of AC power, pin E and relay contact interconnections)							
Insulation resistance	DC 500V Min. 20M Ω							
Vibration resistance	(In compliance with JIC C0911) Durable for one hour along three axes at 10 to 55 Hz with 0.5 mm amplitude No error for one hour along three axes at 10 to 55 Hz with 0.35 mm amplitude							
Source voltage	AC 90~132V, or AC $180 \sim 264 \mathrm{~V}(50 / 60 \mathrm{~Hz})$							
Power consumption	With numerical display: Approx. 5VA With I/O indicators: Approx. 3VA							
Ambient temperature (during operation)	During power supply: $0 \sim+40^{\circ} \mathrm{C}\left(-10 \sim+50^{\circ} \mathrm{C}\right.$ with no risk of destroyed battery) During memory backup: $-10 \sim+50^{\circ} \mathrm{C}$							

Storage temperature	With memory backup (included battery): $-20 \sim+50^{\circ} \mathrm{C}\left(-20 \sim+70^{\circ} \mathrm{C}\right.$ during transportation of less than one week) Without memory backup: $-20 \sim+55^{\circ} \mathrm{C}$
Ambient/Storage humidity	$35 \sim 85 \%$ RH (with no dewing)
Noise resistance ${ }^{* 7}$	1 kV (square wave pulse with $1 \mu \mathrm{~s}$ width)
Weight	Approx. 0.5 kg

Notes:

*1. Power-on reset is available on the KCX-1 to 6 and KCX-1D to 6D, the models without the memory backup option (battery). "Reset time" is the time required for the counter to restart counting after the power is turned on.
*2. DC output

When connected to 12 V

- Positive load

ONegative load

When connected to 24 V

$* 3$. Time required for the counter to generate signal after the last pulse is counted at the rising edge.

A or B

*4. Time required for the included battery to be fully charged.
*5. Time for an internal circuit to disable pulse input and reset input after it detects power failure. Until this time, these signal inputs remain active.
*6. Time for an internal circuit to enable pulse input and reset input after it detects power recovery.
*7. Noise tests also include static discharge, induced load switching, electromagnetic switch oscillation and other tests defined by KOYO.

KCX- $\square, \square \mathbf{M}, \square \mathbf{D}, \square \mathbf{D M}$

Output modes

Type A (One shot) output

-The counter generates a signal upon countup, or when the number of input pulses has reached the preset value.
OUsing a dial, the output duration can be adjusted between 50 ms and $1,000 \mathrm{~ms}$.
OUpon countup, both the count and signal output are automatically reset.
OCount is reset to zero when the external reset terminal is activated.

With memory backup

Standard models

Type B (Hold) output

-The counter generates and holds a signal upon countup, or when the number of input pulses has reached the preset value.
On the counters with numerical displays, the terminals (4), (5) and (6) can be connected. In this case, the count is not reset upon countup, but continues to be incremented for each pulse input.
When the terminal (4) and (5) are connected, the count is upon countup. (See "Switching between Type A and Type B" below.)

With memory backup

Standard models

Switching between Type A and Type B

Connect terminals (4) and (5) to select the Type B operation. The count is reset upon countup.
If the terminals (4), (5) and (6) are connected, the count is not reset upon countup. It continues to be incremented for each pulse input.

Type B operation

Terminal Assignment

-With I/O indicators

Teminal number	Name	Description
1	+12V	Sensor power output
2	IN(10cps)	Count input
3	IN	High speed count input*1
4	E	Grounding $\quad * 2$ (capacitor \ominus)
5	CH	One shot output/Hold switch (capacitor \oplus)
6	-	Not connected
7	R	External reset input
8	OUT	DC output
9	COM.	Relay output
10	N.O.	
11	N.C.	
12	AC180~264V	$\} \text { AC power input }$
13	AC90~132V	
14	ACOV	

OWith numerical display

Teminal number	Name	Description
1	+12V	Sensor power output
2	$\mathrm{IN}(10 \mathrm{cps})$	Count input
3	IN	High speed count input * 1
4	E	Grounding $\quad * 2$ (capacitor \ominus)
5	CH 1	One shot output/Hold switch (capacitor \uparrow)
6	CH 2	Auto reset/Not auto reset switch
7	R	External reset input
8	OUT	DC output
9	COM.	
10	N.O.	$\}$ Relay output
11	N.C.	
12	AC180~264V	
13	AC90~132V	\} AC power input
14	ACOV	

*1. See Specifications.
*2. Capacitor for output time extension

Wiring Diagrams

Pulse input

1. Relay input

2. DC input

3. Connection to open collector output

Notes on relay input

(1)On the circuit shown on the right, the input current to the relay is less than 2 mA . Use a
 reliable relay that responds to such small current. Do not use an electromagnetic switch contact designed for large current and voltage.
(2)The following table lists the standard responses of Terminal (2) at the pulse rate of 10 cps :

Input voltage	On delay (ton)	Off delay (toff)
6 V	16 ms	4 ms
12 V	8 ms	8 ms
30 V	3 ms	23 ms

These are the standard values. T1 and T0 should be at least three times longer than ton and toff. For example, when using the DC 12 V sensor power, T 1 and T 0 should be 24 ms or more.

Output Connection

1. Relay output

2. DC output
 -Source load

OSink load

Electric current flows into the circuit when the output voltage falls to "L" level. Contrary to the open collector, the output rises to " H " level upon countup.

Connection Examples

Direct connection to a sensor

Parallel Counters

1. Relay input

2. DC input

Count disable using a free terminal

Pulse count is disabled when the contact is closed to force input to the terminal (2). However, the count increments by 1 when the contact is closed while the sensor (terminal (3)) output is at "L" level.

Count disable during signal output

Connection to TTL logic gate

Pull-in current is 4 mA on the KCX counter side (0.4V residual voltage).

KCX- $\square, \square \mathbf{M}, \square \mathbf{D}, \square \mathbf{D M}$

List of Counter Modes One of the following six combinations can be selected for the numerical display counters.

Output		Upon countup		Count disable	Timing chart	Connection
Held	One shot	Reset	Not reset			
	\bullet	\bullet			Type A operation	
\bullet			-		Type B Operation	(4)-5-(6)
-		-				(4)-5
	\bullet	\bullet		\bullet		$\begin{aligned} & \text { (2)-(8)* } \\ & \text { or } \\ & \text { (3)-(8) } \end{aligned}$
-			-	\bullet		$\begin{aligned} & \text { (2)-8)* } \\ & \text { or } \\ & \text { (3)-8 } \\ & \text { (4)-5)-(6) } \end{aligned}$
-		-		-		$\begin{aligned} & \text { (2)-(8)* } \\ & \text { or } \\ & (3)-8 \\ & (4)-(5) \end{aligned}$

*When Terminal (8) is connected to Terminal (2), the time for the count disable to be activated is the same as the response time of Terminal (2)

For optimum performance(KCX- $\square, \square \mathrm{M}, \square \mathrm{D}, \square \mathrm{DM} / \square \mathbf{W}, \square \mathrm{WM} / \square \mathrm{T} / \mathrm{B} / \mathrm{B} 6 \mathrm{~T})$

Changing the duration of Type A output

In the One shot mode, output duration can be changed from 50 ms to $1,000 \mathrm{~ms}$. For adjustment, use the dial on the front panel.
(On the KCX- $\square \mathrm{W}$ and KCX- $\square \mathrm{WM}$ counters, the dial is located on the rear panel.)

Turn the dial counterclockwise or clockwise to decrease or increase the duration. Turn it fully to either direction to select the minimum or maximum time.

On the KCX single preset counters, you can extend the output time by adding a capacitor between the terminals (4) and (5).

Electrolytic capacitor	Output duration			
	Minimum		Maximum	
None		50 ms	\sim	1 s
$2.2 \mu \mathrm{~F}$	16 V	100 ms	\sim	2 s
$4.7 \mu \mathrm{~F}$	16 V	150 ms	\sim	3 s
$10 \mu \mathrm{~F}$	16 V	250 ms	\sim	5 s
$22 \mu \mathrm{~F}$	16 V	500 ms	\sim	10 s

Memory backup at power shutdown

In some counters, a second battery is integrated to backup the count memory upon power shutdown. The battery can be fully charged in 50 hours. With only one hour charging, it can supply power for 40 hours, or 100 hours on the KCX- $\square \mathrm{WM}$ and KCX\square T models.

Notes on memory backup

1. When power is shut down, the count display is cleared, and the sensor power drops to 0 V .
2. During Type B (Hold mode) operation, DC output also drops to $O V$ resulting in random signal. Upon the recovery of power, the signal output returns to the status before the power shutdown.
3. If the power is turned off during pulse input, the counter uses the battery to continue correct count.
4. You cannot reset the count by shutting power down.
5. During power shutdown, the count is not reset by any external reset signal.
6. In the following cases, 100 hours are required for charging the battery:
When the counter is used for the first time
When the battery is unused for a long time

7. Service life of battery

When fully charged, the battery should be able to support memory for 2,000 hours (5,000 hours on the KCX- \square WM and KCX- \square T models). It should be replaced when this period is reduced to 50%. Normally, the battery can be used for five years. It can serve longer if the ambient temperature is kept at 5 to $30^{\circ} \mathrm{C}$.

Protection against noise

All of the KOYO electronic counters are tested for noise resistance. In addition to the standard tests, we perform special inspections to assure reliable performance. Use the following procedures for additional enhancement:

1. When you use a solenoid valve, clutch or brake near the counter, connect a surge absorbing circuit in parallel with its drive coil. This circuit should consist of a capacitor serially connected with a resistance of $100 \Omega(1 / 2 \mathrm{~W})$. Use an oilimpregnated capacitor or an MP capacitor of 0.1 to $0.5 \mu \mathrm{~F}$.

2. In a noisy area, do not share the power line with a device that uses large electric current. Always shield the I/O signal cables, and connect the shielded cables between the sensor and the counter.

If they are installed on separate frames, use a thick wire of at least $0.5 \mathrm{~mm}^{2}$ to connect the frames.

3. Keep the minimum distance between Terminal E and the frames.

If you use a common ground for the counter and other devices, connect the ground cable to the counter frame. Use a thick and short ground cable, and isolate it from any other cable that grounds a large current.

4. Use a resistor of $470 \Omega(1 / 2 \mathrm{~W})$ if you add an electromagnetic relay to the slow pulse count terminal. Insert the resistor between the input terminal and the ground cable. This prevents incomplete contact, and helps improve reliability.

Changing the preset value

During operation, a change to the preset value may cause the counter to generate a false signal. Before you make a change, always turn the power off, or reset the counter. Otherwise, the counter generates no signal upon countup, or erroneously generates a signal before or after the count has reached the new value.

Presetting to zero

The counter may be preset to zero (for example, to " 000 " on a 3digit counter). This may cause the counter to act as follows:
OIt may generate a signal unless the input pulse is at "L" level and the reset signal is at "H" level.
OIn the Type B mode, the counter may display $0,1,2,3$ if a sequence of pulse signals are entered while the reset signal is at "L" level.

Connecting the power

On the KCX Series counters, the power transformer is set to 110 V or 220 V . Avoid the following connection:

Wrong

Correct

[^0]
Cautions

-Output relay contact

The counter can be connected to an induced load. It may be an electromagnetic switch, control relay, AC solenoid or electromagnetic valve. The counter contains an output relay contact. Its service life is reduced if higher current or voltage flows to the contact. The following graph shows the relation between the durability of the contact and the magnitude of load:

On the contact surface, carbide is produced by glow discharge of induced load being switched. This increases the contact resistance. The carbide produced can be eliminated by arc discharge that occurs at higher current. It keeps the contact surface clean with minimum resistance. At lower current or voltage, the contact cannot be switched properly because of the carbide. It becomes unserviceable before the number of contacts reaches the normal limit. Its life can be reduced to as short as one tenth or one hundredth of the time estimated from the above curve. If you use small voltage or current, action should be taken to prevent glow discharge.

An effective means is to use a CR surge absorber or varistor. Connect such element in parallel with the load as shown below.

Surge absorbing circuit

-The induced load of the relay contact is 10% to 20% of the resistance load. The smaller the load is, the longer the contact can serve.

- With or without the memory backup, the status of DC output during power shutdown is undefined. That is, the output can randomly change between " 1 " and " 0 ".

On some models, certain numbers are displayed in different shapes as shown below. This is normal for such models.

KCX-1D/2D/3D/4D KCX-B/KCX-B6T	Other models
\square	\square
\square	\square

- External dimensions of Socket B (KB-03): Same as

Socket F
OKA-01, KF-03 and KB-03 are options.

Boring dimensions for wall surface mounting using Socket F

OBoring dimensions for flush mounting

Notes:

- Use the screws provided to install the counter on Socket F (KF-03) or Socket B (KB-03).
- For the connector kit KA-01 and Socket B (KB-03), use screws sized as follows:

For the connector kit (KA-01): 12mm or less
For Socket B (KB-03): 30 mm or less
Do not use longer screws, as they may break the internal elements.

Mounting hole dimensions

[^0]: ※Other counters

